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Minimum Squared Error

* Previous methods only worked on linear
separable cases, by looking at
misclassified samples to correct error

* MSE looks at all samples, using linear
equations to find estimate




Minimum Squared Error

* x space mapped to y space.

» For all samples x; in dimension d, there exists a
y; of dimension d*

« Find vector a making all aty; > 0
» All samples y; in matrix Y, dim n x d*,

* Ya = b (b is vector of positive constants)

b
yio yu .. Y| ao b
. hi . )
b is our margin N P
for error =
n0 nl nd ad
Yy Yy y by

Minimum Squared Error

* Y is rectangular (n x d*), so it does not
have a direct inverse to solve Ya=Db

* Ya - b = e — gives error, minimize it

o Square error llel?  Js(a) = ||Ya—b”2 =Y (a'y,=b)’

i=1

 Take Gradient VJi=)2(a'yi—bi)yi=2Y'(Ya—b)

i=1

» Gradient should goto Zero Y'Ya=Y'b
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Minimum Squared Error

* YtYa = Y'b goes to a = (Y'Y)1Y'b

 (Y'Y)1Y!is the psuedo-inverse of Y,
dimension d” x n, can be written as Y’

e Y'Y=1 YYT#1

» a=Y"b gives us a solution with b being a
margin.

Minimum Squared Error
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1
Four training points and the decision boundary a' ( X1 ) = 0, where a was found by

means of a pseudoinverse technique. 2

1 1 2
Our matrix Y is therefore Y b ]1 23 01

ilede=2a &8
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Fisher’s Linear Discriminant

» Based on projection of d-dimensional data
onto a line.

e Loses a lot of data, but some orientation
of the line might give a good split
y=wk, lwll=1
* y. is projection of x; onto line w
* Goal: Find best w to separate them
» Highly overlapping data performs poorly

Fisher’s Linear Discriminant

e Mean of each class D; ;= 1 Z X
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Fisher’s Linear Discriminant

o Scatter Matrices 5= ), (x—mi)(x—m)'

x€ Di

w= SV},I(m1 —m,)

4t
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Fisher’'s Relation to MSE

* MSE and Fisher equivalent for specific b

° n; = number of xe D,

> 1, 1s column vector of n; full of ones

n

—1

Y:|: 11 Xl :| = WO b: I’Ll 1
-1, -X, w n

» Plug into Y'Ya = Ytb "

—1

L =1 X, | w _ L =1 |n :
X, -X)|-1, -X,|w X, -X; ny

2
n

w=anS,,' (m, —m,)




Relation to Optimal Discriminant

e If yousetb=1_, MSE approaches the
optimal Bayes discriminant g, as number
of samples approaches infinity. (see 5.8.3)

Plje)

i go(x)=P(®, 1 x)—P(w, | x)
2 Plfey)
! \ g(x) is MSE estimation
gix)

I
m ot
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Widrow-Hoff / LMS

e LMS — Least Mean Squared
» Still solves when Y'Y is singular

a,b, threshold 0, step n(.), k=0
begin
do
k=(k+1)modn
a=a+nk)(b, —a'y)y
until | n(k) )(b, — aly*)y*1 < 0
return a
end
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Widrow-Hoff / LMS

» LMS not guaranteed to converge to a
separating plane, even if one exists.

X

Procedural differences

 Perceptron, relaxation

o If samples linearly separable, we can find a
solution

> Otherwise, we do not converge to a solution
* MSE

> Always yields a weight vector

> May not be the best solution
Not guaranteed to be a separating vector
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Choosing b

o Arbitrary b, MSE minimizes lIYa — bll?

o If linearly separable, we can more smartly
choose b
> Define a4 and B such that
Ya=0(>0
> Every component of B is positive

Modified MSE

* J(a,b) =1IYa -Dbll?

* a, b allowed to vary
e Subjecttob >0

e Min of J is zero

» a that achieves min J is the separating
vector
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Ho-Kashyap/Descent prodecure
V_J, =2Y'(Ya-b)

V,J, =-2(Ya-b)
e For any b

a=Y'b

So,V ,J, =0and we'redone? no...

— Must avoid b =0
— Must avoid b < 0

Ho-Kashyap/Descent Procedure

* Pick positive b
* Don’t allow reduction of b’s components

* Set all positive components of v,J, to zero
> bk+1) = b(k) - nc

B V,J, ifv,J <0
0 otherwise

)

1
c= E(Vb‘ls _|VbJs
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Ho-Kashyap/Descent Procedure

V,J, =-2(Ya—b)
e=Ya—b

]

1
b, =b, —UE[VbJs _‘Vb‘]s

b, = by +277kel: e; Z_(ek _‘ek‘)
a, =Y'b,

Ho-Kashyap

e Algorithm 11

> Begin initialize a, b, n() < 1, threshold b;,,, k..«
do k =k+1 mod n
ce=Ya-b
+ et =Ys(e+abs(e))
* b=b+2n(k)e"
ca=Y'
* if abs(e) <= b,;, then return a,b and exit
Untilk =k,
Print “NO SOLUTION”

> End
e When e(k) = 0 = we have solution
* When e(k) <= 0 = samples not linearly separable
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Convergence (separable case)
e I[f 0 <n <1, and linearly separable

> Solution vector exists

> We will find in finite k steps
» Two possibilities

> e(k) = 0 for some finite k,

> No zero in e()
o If e(k,)

> a(k), b(k), e(k) stop changing

> Ya(k) = b(k) > 0 for all k >k,

o If we find k,,, algorithm terminates with solution
vector

Convergence (separable)

* ¢() never zero for finite k

o If samples are linearly separable
°Ya=b,b>0

» Because b is positive, either
> e(k) is zero, or
° e(k) 1s positive

* Since e(k) cannot be zero (first bullet), it
must be positive
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Convergence (separable)

o Va(lle IP-lley, IIP)= n(1- n)lle*, [P+ nZe*, YYTe*,
YYT is symmetric, positive semi-definite
O<n<l1

o Therefore, lle, /1> > lle,, 7 if0<n < 1
llell will eventually converge to zero

a will eventually converge to solution vector

Convergence (non-separable)

e If not linearly separable, may obtain a non-
zero error vector without positive
components

e Still have

Va(lle IP-lle,.,12)= n(1- mllet, 12+ n2e*, YYe*,
So limiting llell cannot be zero
* Will converge to a non-zero value

» Convergence says that
> e*, =0 for some finite k (separable)

o et will converge to zero while llell is bounded
away from zero (non-separable)
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Support Vector Machines
(SVMs)

SVMs

» Representing data in higher dimensions space, SVM
will construct a separating hyperplane in that space,
one which maximizes margin between the two data

sets. X,
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Application

e Face detection, verification, and
recognition
* Object detection and recognition

e Handwritten character and digit
recognition

 Text detection and categorization

» Speech and speaker verification,
recognition

 Information and image retrieval

Formalization

* We are given some training data, a set of points of the

form
D= {(xi,c1)|x: € R, ¢; € {—1,1}}",
Equation of separating hyperplane:
w-x—b=10.

The vector w is a normal vector. The parameter b/llwll determines
the offset of the hyperplane from the origin along the normal vector
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Formalization cont...

» Defining two hyperplanes given by equations:
HI: w-x—b=1
H2: w-x—b=—1.
e These hyperplanes are defined in such a way that no
points lies between them

» To prevent data points falling between these
hyperplanes, following two constraints are defined:

w-x;—b2>1
w-x;—b< -1

Formulation cont...

e This can be rewritten as:

clw-x; —b) = 1, foralll <:<n

* So the formulation of the optimization problem is
> Choose w, b to minimize |lwll
subject to

cgw-xj—b)>1, foralll<i<n
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SVM Hyperplane Example

SVM Training

e Langrange Optimization problem
» Reformulated Optimization Problem is given as:

1 :
Lp = ;| w| ” z citgi [ Xi - w4 b) 4 Zfl,:
= 1 i—1

¢ Thus the new optimization problem is to minimize Lp
w.r.t w and b subject to:

T ()

10/2/2008
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SVM Training cont...

e Dual of Langrange formulation

The dual of Langrange states that the gradient descent of Ly with
respect to w and b vanishes.
so we have the dual as:

1
Lp Z o 2 Z QGO YEY X X
The optimization problem w.r.t dual is to maximize L, subject to:

ivs = ()

* From the above optimization equation we have:

w z O X
» This shows that the solution is the inner product of input
points
* Most of the points have O to be zero and for those

points for which Ol is not zero are the closest points to
the separating hyperplane. These points are called
support vectors.
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Advantages & Disadvantages of
SVM

* Advantages
° Gives high generalization performance

o Complexity of SVM classifier is characterized by number of
support vectors rather than the dimensionality of transformed
space.

» Disadvantages

° The training time scales somewhere between quadratic and cubic
with respect to the number of training samples

Recognition of 3D-Objects

e Experiment involved recognition of 3D objects from the
COIL db

» Each coil image is transformed into eight-bit vector of
32X32 = 1024 components
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