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5.8, 5.9, 5.11

Minimum Squared ErrorMinimum Squared Error

� Previous methods only worked on linear 

separable cases, by looking at 

misclassified samples to correct error

� MSE looks at all samples, using linear 

equations to find estimate
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Minimum Squared ErrorMinimum Squared Error

� x space mapped to y space.

� For all samples xi in dimension d, there exists a 

yi of dimension d^

� Find vector a making all atyi > 0 

� All samples yi in matrix Y, dim n x d^, 

� Ya = b (b is vector of positive constants)

� b is our margin 

for error
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Minimum Squared ErrorMinimum Squared Error

� Y is rectangular (n x d^), so it does not 

have a direct inverse to solve Ya = b

� Ya – b = e – gives error, minimize it

� Square error ||e||2

� Take Gradient

� Gradient should goto Zero
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Minimum Squared ErrorMinimum Squared Error

� YtYa = Ytb goes to a = (YtY)-1Ytb

� (YtY)-1Yt is the psuedo-inverse of Y, 

dimension d^ x n, can be written as Y† 

� Y†Y = I YY† ≠ I

� a = Y†b gives us a solution with b being a 

margin.

Minimum Squared ErrorMinimum Squared Error
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Fisher’s Linear DiscriminantFisher’s Linear Discriminant

� Based on projection of d-dimensional data 

onto a line.

� Loses a lot of data, but some orientation 

of the line might give a good split

y = wtx,   ||w|| = 1

� yi is projection of xi onto line w

� Goal: Find best w to separate them

� Highly overlapping data performs poorly

Fisher’s Linear DiscriminantFisher’s Linear Discriminant

� Mean of each class Di

� w = m1 – m2 / || m1 – m2||
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Fisher’s Linear DiscriminantFisher’s Linear Discriminant

� Scatter Matrices

� SW = S1 + S2
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Fisher’s Relation to MSEFisher’s Relation to MSE

� MSE and Fisher equivalent for specific b

◦ ni = number of 

◦ 1i is column vector of ni full of ones

� Plug into YtYa = Ytb
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Relation to Optimal DiscriminantRelation to Optimal Discriminant

� If you set b = 1n , MSE approaches the 

optimal Bayes discriminant g0 as number 

of samples approaches infinity. (see 5.8.3)

)|()|()( 220 xPxPxg ωω −=

g(x) is MSE estimation

WidrowWidrow--Hoff / LMSHoff / LMS

� LMS – Least Mean Squared

� Still solves when YtY is singular

a,b, threshold θ, step η(.), k = 0

begin

do

k = (k + 1) mod n

a = a + η(k)(bk – atyk)yk

until | η(k) )(bk – atyk)yk | < θ

return a

end
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WidrowWidrow--Hoff / LMSHoff / LMS

� LMS not guaranteed to converge to a 

separating plane, even if one exists. 

Procedural differencesProcedural differences

� Perceptron, relaxation

◦ If samples linearly separable, we can find a 

solution

◦ Otherwise, we do not converge to a solution

� MSE

◦ Always yields a weight vector

◦ May not be the best solution

� Not guaranteed to be a separating vector
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Choosing bChoosing b

� Arbitrary b, MSE minimizes ||Ya – b||2

� If linearly separable, we can more smartly 

choose b

◦ Define â and ß such that

Yâ = ß > 0

◦ Every component of ß is positive

Modified MSEModified MSE

� Js(a,b) = ||Ya – b||2

� a, b allowed to vary

� Subject to b > 0

� Min of Js is zero

� a that achieves min Js is the separating 

vector
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HoHo--KashyapKashyap/Descent /Descent prodecureprodecure

� For any b

– Must avoid b = 0

– Must avoid b < 0

( )bYaYJ
t

sa −=∇ 2

( )bYaJ sb −−=∇ 2

bYa
†=

no...  done? rewe' and  So, 0=∇ sa J

HoHo--KashyapKashyap/Descent Procedure/Descent Procedure

� Pick positive b

� Don’t allow reduction of b’s components

� Set all positive components of        to zero

◦ b(k+1) = b(k) - ηc

sa J∇
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HoHo--KashyapKashyap/Descent Procedure/Descent Procedure
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HoHo--KashyapKashyap

� Algorithm 11

◦ Begin initialize a, b, η() < 1, threshold bmin, kmax

� do k = k+1 mod n

� e = Ya – b

� e+ = ½(e+abs(e))

� b = b + 2η(k)e+

� a = Y†b

� if abs(e) <= bmin then return a,b and exit

� Until k = kmax

� Print “NO SOLUTION”

◦ End

� When e(k) = 0 � we have solution

� When e(k) <= 0 � samples not linearly separable
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Convergence (separable case)Convergence (separable case)

� If 0 < η < 1, and linearly separable
◦ Solution vector exists

◦ We will find in finite k steps

� Two possibilities
◦ e(k) = 0 for some finite k0

◦ No zero in e()

� If e(k0)
◦ a(k), b(k), e(k) stop changing

◦ Ya(k) = b(k) > 0 for all k > k0

◦ If we find k0, algorithm terminates with solution 
vector

Convergence (separable)Convergence (separable)

� e() never zero for finite k

� If samples are linearly separable

◦ Ya = b, b > 0

� Because b is positive, either

◦ e(k) is zero, or

◦ e(k) is positive

� Since e(k) cannot be zero (first bullet), it 

must be positive
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Convergence (separable)Convergence (separable)

◦ ¼(||ek||
2-||ek+1||

2)= η(1- η)||e+
k||

2+ η2e+t
kYY†e+

k

� YY† is symmetric, positive semi-definite 

� 0 < η < 1

◦ Therefore, ||ek||
2 > ||ek+1||

2 if 0 < η < 1

� ||e|| will eventually converge to zero

� a will eventually converge to solution vector

Convergence (nonConvergence (non--separable)separable)

� If not linearly separable, may obtain a non-
zero error vector without positive 
components

� Still have
� ¼(||ek||

2-||ek+1||
2)= η(1- η)||e+

k||
2+ η2e+t

kYY†e+
k

� So limiting ||e|| cannot be zero

� Will converge to a non-zero value

� Convergence says that

◦ e+
k = 0 for some finite k (separable)

◦ e+
k will converge to zero while ||e|| is bounded 

away from zero (non-separable)



10/2/2008

13

Support Vector MachinesSupport Vector Machines

(SVMs)(SVMs)

SVMsSVMs

� Representing data in higher dimensions space, SVM 

will construct a separating hyperplane in that space, 

one which maximizes margin between the two data 

sets.
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ApplicationApplication

� Face detection, verification, and 
recognition

� Object detection and recognition

� Handwritten character and digit 
recognition 

� Text detection and categorization 

� Speech and speaker verification, 
recognition

� Information and image retrieval

FormalizationFormalization

� We are given some training data, a set of points of the 

form

Equation of separating hyperplane:

The vector w is a normal vector. The parameter b/||w|| determines 

the offset of the hyperplane from the origin along the normal vector   
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Formalization cont…Formalization cont…

� Defining two hyperplanes given by equations:

H1:

H2:

� These hyperplanes are defined in such a way that no 

points lies between them

� To prevent data points falling between these 

hyperplanes, following two constraints are defined: 

Formulation cont…Formulation cont…

� This can be rewritten as:

� So the formulation of the optimization problem is

◦ Choose w, b to minimize ||w|| 

subject to  



10/2/2008

16

SVM Hyperplane ExampleSVM Hyperplane Example

SVM TrainingSVM Training

� Langrange Optimization problem

� Reformulated Optimization Problem is given as:

� Thus the new optimization problem is to minimize LP

w.r.t w and b subject to:
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SVM Training cont…SVM Training cont…

� Dual of Langrange formulation
The dual of Langrange states that the gradient descent of LP with 

respect to w and b vanishes.
so we have the dual as:

The optimization problem w.r.t dual is to maximize LD subject to:

� From the above optimization equation we have:

� This shows that the solution is the inner product of input 

points

� Most of the points have α to be zero and for those 

points for which α is not zero are the closest points to 

the separating hyperplane. These points are called 

support vectors. 
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Advantages & Disadvantages of Advantages & Disadvantages of 
SVMSVM
� Advantages

◦ Gives high generalization performance

◦ Complexity of SVM classifier is characterized by number of 

support vectors rather than the dimensionality of transformed 

space.

� Disadvantages

◦ The training time scales somewhere between quadratic and cubic 

with respect to the number of training samples

Recognition of 3DRecognition of 3D--ObjectsObjects

� Experiment involved recognition of 3D objects from the 

COIL db

� Each coil image is transformed into eight-bit vector of 

32X32 = 1024 components
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